Fisika

Fisika adalah ilmu mengenai alam, yang mempelajari unsur-unsur dasar pembentuk alam semesta, gaya-gaya yang bekerja di dalamnya, dan akibat-akibatnya.

Fisika

Fisika adalah ilmu mengenai alam, yang mempelajari unsur-unsur dasar pembentuk alam semesta, gaya-gaya yang bekerja di dalamnya, dan akibat-akibatnya.

Jumat, 12 Mei 2017

Radiasi Benda Hitam

A. RADIASI BENDA HITAM Radiasi panas adalah radiasi yang dipancarkan oleh sebuah benda sebagai akibat suhunya. Setiap benda memancarkan radiasi panas, tetapi pada umumnya, Anda dapat melihat sebuah benda, karena benda itu memantulkan cahaya yang datang padanya, bukan karena benda itu memancarkanradiasi panas. Benda baru terlihat karena meradiasikan panas jika suhunya melebihi 1.000 K. Pada suhu ini benda mulai berpijar merah seperti kumparan pemanas sebuah kompor listrik. Pada suhu di atas 2.000 K benda berpijar kuning atau keputih-putihan, seperti pijar putih dari filamen lampu pijar. Begitu suhu benda terus ditingkatkan, intensitas relatif dari spektrum cahaya yang dipancarkannya berubah. Hal ini menyebabkan pergeseran warna-warna spektrum yang diamati, yang dapat digunakan untuk menentukan suhu suatu benda. Secara umum bentuk terperinci dari spektrum radiasi panas yang dipancarkan oleh suatu benda panas bergantung pada komposisi benda itu. Walaupun demikian, hasil eksperimen menunjukkan bahwa ada satu kelas benda panas yang memancarkan spektra panas dengan karakter universal. Benda ini adalah benda hitam atau black body. Benda hitam didefinisikan sebagai sebuah benda yang menyerap semua radiasi yang datang padanya. Dengan kata lain, tidak ada radiasi yang dipantulkan keluar dari benda hitam. Jadi, benda hitam mempunyai harga absorptansi dan emisivitas yang besarnya sama dengan satu. Seperti yang telah Anda ketahui, bahwa emisivitas (daya pancar) merupakan karakteristik suatu materi, yang menunjukkan perbandingan daya yang dipancarkan per satuan luas oleh suatu permukaan terhadap daya yang dipancarkan benda hitam pada temperatur yang sama. Sementara itu, absorptansi (daya serap) merupakan perbandingan fluks pancaran atau fluks cahaya yang diserap oleh suatu benda terhadap fluks yang tiba pada benda itu. Benda hitam ideal digambarkan oleh suatu rongga hitam dengan lubang kecil. Sekali suatu cahaya memasuki rongga itu melalui lubang tersebut, berkas itu akan dipantulkan berkali-kali di dalam rongga tanpa sempat keluar lagi dari lubang tadi. Setiap kali dipantulkan, sinar akan diserap dinding-dinding berwarna hitam. Benda hitam akan menyerap cahaya sekitarnya jika suhunya lebih rendah daripada suhu sekitarnya dan akan memancarkan cahaya ke sekitarnya jika suhunya lebih tinggi daripada suhu sekitarnya. Benda hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara. Radiasi benda hitam adalah radiasi elektromagnetik yang dipancarkan oleh sebuah benda hitam. Radiasi ini menjangkau seluruh daerah panjang gelombang. Distribusi energi pada daerah panjang gelombang ini memiliki ciri khusus, yaitu suatu nilai maksimum pada panjang gelombang tertentu. Letak nilai maksimum tergantung pada temperatur, yang akan bergeser ke arah panjang gelombang pendek seiring dengan meningkatnya temperatur. B. INTENSITAS RADIASI 1. Hukum Stefan-Boltzmann Pada tahun 1879 seorang ahli fisika dari Austria, Josef Stefan melakukan eksperimen untuk mengetahui karakter universal dari radiasi benda hitam. Ia menemukan bahwa daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu benda hitam panas (intensitas total) adalah sebanding dengan pangkat empat dari suhu mutlaknya. Sehingga dapat dirumuskan: I = e σ T4 Dengan I menyatakan intensitas radiasi pada permukaan benda hitam pada semua frekuensi, T adalah suhu mutlak benda, dan σ adalah tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-2K-4. Beberapa tahun kemudian, berdasarkan teori gelombang elektromagnetik cahaya, Ludwig Boltzmann (1844 – 1906) secara teoritis menurunkan hukum yang diungkapkan oleh Joseph Stefan (1853 – 1893) dari gabungan termodinamika dan persamaan-persamaan Maxwell. Oleh karena itu, persamaan diatas dikenal juga sebagai Hukum Stefan-Boltzmann, yang berbunyi: “Jumlah energi yang dipancarkan per satuan permukaan sebuah benda hitam dalam satuan waktu akan berbanding lurus dengan pangkat empat temperatur termodinamikanya”. 2. Hukum pergesera wien Bila suhu benda terus ditingkatkan, intensitas relative dari spectrum cahaya yang dipancarkan berubah. Ini menyebabkan pergeseran dalam warna-warna spectrum yang diamati, yang dapat digunakan untuk menaksir suhu suatu benda. Total energi kalor radiasi yang dipancarkan adalah sebanding dengan luas di bawag grafik. Tampak bahwa total energi kalor radiasi radiasi meningkat dengan meningkatnya suhu ( menurut hokum Stefan- Bolztman. Energi kalor sebanding dengan pangkat empat suhu mutlak. Radiasi kalor muncul sebanding suatau spectra kontinu, bukan spectra diskret seperti garis-garis terang yang dilihat dalam spectra nyala api. Atau garis-garis gelap yang dapat dilihat dalam cahaya matahari (garis Fraunhofer) (Spektra adalah bentuk tunggal spectrum) Sebagai gantinya, semua panjang gelombang hadir dalam distribusi energi kalor yang luas ini. Jika suhu bendahitam meningkat, panjang gelombang untuk intensitas maksimum (lm) bergeser ke nilai panjang gelombang yang lebih pendek Jika suatu benda padat dipanaskan maka benda itu akan memancarkan radiasi kalor. Pada suhu normal, kita tidak menyadari radiasi elektromagnetik ini karena intensitasnya rendah. Pada suhu lebih tinggi ada cukup radiasi inframerah yang tidak dapat kita lihat tetapi dapat kita rasakan panasnya jika kita mendekat ke benda tersebut. 3. Perumusan Rayleigh dan Jeans Pada masa itu para ilmuwan mencoba mencari penjelasan atas kenyataan empiris tersebut. Pada masa tersebut pula dua ilmuwan, yakni Lord Rayleigh (1842-1919) dan Sir James Hopward Jeans (1877-1946) mencoba menggunakan teori kinetik gas dalam fisika klasik untuk mengolah hasil empiris tersebut. Menurut fisika klasik mengenai ekuipartisi energi, energi rata-rata setiap derajat kebebasan pada suhu T adalah ½ kT. Maka energi total untuk setiap getaran gelombang menjadi kT, dengan k adalah tetapan Stefan-Boltzmann. Meskipun mustahil untuk dapat menghitung besarnya kecepatan setiap partikel gas dalam suatu ruang, teori maxwell dapat mengaitkan kecepatan setiap partikel tersebut terhadap banyaknya partikel di dalam suatu kotak dan dijabarkan melalui kurva distribusi Maxwell. Disini Rayleigh-Jeans melihat bahwa kurva yang dijabarkan oleh maxwell serupa dengan hasil yang diperoleh pada intensitas spektrum radiasi kalor Karena sebaran energi kinetik diwakili oleh sebaran kecepatan karena energi kinetik dapat dinyatakan dalam kecepatan. Oleh karena itu mereka beranggapan bahwa ada kemiripan antara sifat panas benda dan radiasi kalor. Yang kecil berada dalam wilayah panjang gelombang ultraviolet.l mengecil. Penyimpangan persamaan Rayleigh-Jeans yang sangat jauh ini selanjutnya diberi istilah katastropi ultraviolet karena l mendekati nol. Hal ini sangat menyimpang dari hasil empiris yang menunjukkan bahwa intensitas akan mendekati nol jika l yang mengecil, intensitas akan membesar. Bahkan intensitas akan menuju tak hingga jika l yang besar. Akan tetapi hasil matematis yang didapatkan mereka untuk l mendekati tak hingga maka intensitas akan mendekati nol. Hal ini sesuai dengan hasil empiris untuk l yang membesar, intensitas akan semakin kecil dan jika lBerdasarkan prinsip ekuipartisi energi, persaman matematis yang didapatkan oleh Rayleigh dan Jeans menunjukkan bahwa untuk Hal tersebut disebabkan mereka beranggapan bahwa energi yang dimiliki oleh setiap spektrum gelombang bersifat kotinu. Artinya, energi gelombang dapat memiliki sembarang nilai dalam batas yang ditentukan. Sehingga didapatkan nilai energi yang mungkin dengan jumlah yang tak terhingga. Dan anggapan tersebut menghasilkan suatu fungsi yang mengakibatkan ketidaksesuaian dengan hasil eksperimen pada panjang gelombang pendek. 4. Teori Max Planck Kegagalan teori Rayleigh-Jeans mendorong seorang fisikawan jerman Max Planck (1858-1947) untuk mencoba melakukan pendekatan lain. Planck menyadari pentingnya untuk memasukkan konsep energi maksimum dalam perhitungan teoritis radiasi benda hitam. Menurut Planck, energi yang diserap atau yang dipancarkan oleh getaran-getaran yang timbul di dalam rongga benda hitam merupakan paket-paket atau kuanta. Besarnya energi setiap paket merupakan kelipatan bilangan asli dari hf dengan h adalah tetapan Planck yang besarnya 6,63 x 10¬¬¬-34 Js dan f adalah frekuensi paket energi. Secara matematis, perumusan Planck dapat dituliskan menjadi E = nhf dengan n adalah kelipatan bilangan asli. Planck membuat aturan bahwa energi setiap modus getar tidak boleh lebih dari energi rata-rata yang dimiliki radiasi (kT). Akan tetapi, karena energi yang mungkin dimilki oleh modus getar nhf, berarti semakin tinggi frekuensi, semakin kecil kemungkinan untuk tidak melebihi kT. Hubungan kuantum Planck menunjukkan bahwa ekuipartisi energi dan setiap jenis getaran memiliki energi total yang berbeda-beda. Menurut Planck, teori klasik gagal menjelaskan radiasi benda hitam pada panjang gelombang pendek karena pada daerah itu kuanta energinya sangat besar sehingga hanya sedikit jenis getaran yang tereksitasi. Berkurangnya jenis getaran yang tereksitasi mengakibatkan getaran tertekan dan radiasi akan menurun menuju nol pada frekuensi yang tinggi. Oleh karena itu rumus Planck dapat terhindar dari catastropi ultraviolet. Persamaan yang menujukkan besarnya energi per satuan luas yang dipancarkan oleh suatu benda hitam yang terdistribusi diantara berbagai panjangnya telah diturunkan oleh Max Planck pada 1900 dengan menggunakan teori kuantum, yaitu sebagai berikut, E=(2πc^2 h)/λ^2 [1/(e^(hc/λkT)-1)] Pada persamaan tersebut, c adalah kecepatan rambat cahaya, λ adalah panjang gelombang cahaya dan T adalah suhu mutlak permukaan benda hitam. Konstanta k dan h dihitung berdasarkan data eksperimen, yakni klPada persamaan tersebut, c adalah kecepatan rambat cahaya, k = 1,38 x 10-23 JK-1¬ (disebut konstanta Boltzmann) h = 6,63 x 10-34 Js (disebut konstanta Planck) maks T = 2,898 x 10-3¬¬ mK.lmaks) dan suhu mutlak (T) suatu benda hitam telah diturunkan oleh Wien yang disebut sebagai hukum pergeseran wien, yaknilHubungan antara panjang gelombang energi maksimum. Menurut Planck, atom-atom pada dinding rongga benda hitam memiliki sifat seperti osilator harmonik. Energi yang dimiliki oleh osilator-osilator harmonik tersebut hanya pada nilai-nilai f tertentu. Nilai-nilai tersebut merupakan kelipatan bilangan asli dari hf, yakni hf, 2hf, 3hf, dan seterusnya. Osilator harmonik tersebut tidak boleh memiliki energi selain harga-harga tersebut. Oleh Planck energi osilator itu dikatakan terkuantisasi. C. Penerapan Radiasi Benda Hitam 1. Penentuan Suhu Permukaan Matahari Suhu permukaan matahari atau bintang dapat ditentukan dengan mengukur daya radiasi matahari yang diterima bumi. Dengan menggunakan hukum Stefan-Boltzmann, total daya yang dipancarkan oleh matahari adalah: PM = I.A Jika diketahui: I = e . σ . TM4 A = luas permukaan matahari = 4πRM e = 1 Maka: PM = e . σ . TM44πRM Keterangan: PM : daya yang dipancarkan matahari (watt) TM : suhu permukaan matahari (K) RM : jari – jari matahari (m) σTM4 : laju radiasi matahari (watt/m2) RB : jari-jari bumi (m) 2. Radiasi Energi yang Dipancarkan Manusia Penerapan radiasi benda hitam juga dapat diterapkan pada benda-benda yang tidak berada dalam kesetimbangan radiasi. Sebagian besar energi manusia diradiasikan dalam bentuk radiasi elektromagnetik, khususnya inframerah. Untuk dapat memancarkan suatu energi, tubuh manusia harus menyerap energi dari lingkungan sekitarnya. Total energi yang dipancarkan oleh manusia adalah selisih antara energi yang diserap dengan energi yang dipancarkan. PT = Ppancar – Pserap Dengan memasukkan hukum Stefan-Boltzmann diperoleh totalenergi yang dipancarkan manusia sebagai berikut. PT = σAe(T4 – To4)

Hukum Newton

Hukum-Hukum Newton dan Contohnya Hukum Newton adalah hukum tentang gaya pada suatu benda yang di temukan dan dikemukakan oleh Sir Isaac Newton. Hukum newton ini disebut juga dengan tiga hukum gerak monumental yang kemudian dikembangkan beliau dalam bukunya yaitu Mathematical Principles of Natural Philosopy (The Principia). Newton juga mendapatkan inspirasi tentang gaya gravitasi setelah beliau tertimpa apel yang jatuh tepat dikepalanya saat ia sedang duduk di bawah pohon apel pada tahun 1665. Peristiwa ini menyadarkan beliau bahwa gaya juga mempengaruhi gerakan bulan. Selengkapnya Silahkan baca Biografi Sir Isaac Newton. Hukum-Hukum Newton antara lain : A. Hukum I Newton Hukum I Newton Berisi bahwa “Sebuah benda diam cenderung terus diam, benda bergerak terus bergerak lurus dengan laju tetap sampai ada gaya yang mempengaruhinya.” maksud dari hukum ini adalah bahwa benda yang diam maka akan terus diam dan tidak akan bergerak sampai ada gaya (tarikan dan dorongan) yang membuatnya bergerak dan benda yang bergerak akan terus bergerak dan akan diam jika ada gaya yang mempengaruhinya untuk diam. Contoh hukum I newton : Contohnya adalah saat mobil yang sedang berjalan kemudian direm maka mobil itu akan berhenti. Mobil itu berhenti karena ada gaya yang mempengaruhinya yaitu gaya gesek. Dan bola yang tadinya diam saat ditendang maka ia akan bergerak. Bola tersebut bergerak karena adanya gaya dorong yang diakibatkan dari tendangan tersebut maka ia akan bergerak. Hukum I Newton ini disebut juga dengan hukum kelembaman atau inersia. Apa itu inersia atau kelembaman? Inersia terjadi saat kita berada didalam kendaraan yang bergerak dan kemudian dihentikan secara tiba-tiba. Maka kita akan terdorong kedepan. Hal ini terjadi karena kita juga memiliki percepatan yang sama dengan mobil namun saat mobil berhenti karena gaya gesek yang dihasilkan rem namun kita tidak berhenti karena tidak ada gaya yang membuat kita berhenti. Sehingga kita terdorong kedepan. Inilah yang membuat pengendara terluka pada saat kecelakaan. Oleh karena itu dibuatlah sabuk pengaman untuk mengurangi inersia agar pengendara aman dari benturan akibat inersia. B. Hukum II Newton Hukum II Newton berbunyi “ Semakin besar gaya yang bekerja pada suatu benda semakin besar percepatannya, tetapi semakin besar massa benda semakin besar perlambatannya.” Pada mobil yang bergerak pada kecepatan 20 km/jam kemudian digas maka mobil tersebut akan melaju dengan lebih cepat. Hal ini terjadi karena adanya gaya dorong yang lebih besar dihasilkan oleh mesin saat digas. Ini merupakan contoh hukum newton yang kedua. Hubungan antara gaya, massa, dan percepatan dapat dituliskan oleh rumus : f = m x a Dengan : f = Gaya m = Massa a = Percepatan Gaya resultan yang bekerja sesuai dengan jumlah perubahan momentum yang dihasilkan benda. Apa itu momentum ? momentum adalah hasil kali antara massa benda dengan keceptannya, jadi : Gaya = perubahan momentum Perubahan waktu Atau F = mv1 - mv0 = m (v1 - v0) = m.a t t dengan : v0 = Kecepatan awal v1 = Kecepatan akhir p = momentum t = waktu C. Hukum III Newton Hukum III Newton berbunyi “ Pada saat suatu benda memberikan gaya pada benda kedua, benda kedua juga melepaskan gaya yang sama tapi melawan arah gaya benda pertama.” Cobalah melemparkan sebuah bola ditembok, maka bola tersebut akan memantul dengan besar gaya yang sama. Ini merupakan aplikasi Hukum newton ketiga. Hukum III Newton ini disebut juga hukum aksi reaksi. Setiap hari kita pasti mengalami gaya aksi reaksi karena gaya selalu berpasangan dan tidak ada gaya yang tunggal.

Senin, 01 Mei 2017

Prinsip Kerja Pesawat Terbang (Hukum Bernoulli)


Prinsip Kerja Pesawat Terbang (Hukum Bernoulli)





Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.
Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).
Aliran Tak-termampatkan
Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll.
Aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:
  • Aliran bersifat tunak (steady state)
  • Tidak terdapat gesekan (inviscid)
Aliran Termampatkan
Aliran termampatkan adalah aliran fluida yang dicirikan dengan berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida termampatkan adalah: udara, gas alam, dll.
Penerapan Hukum Prinsip Bernoulli dalam pesawat terbang
Penampang sayap pesawat terbang memiliki bagian belakang yang lebih tajam dan sisi bagian atasnya lebih melengkung dari pada sisi bagian bawahnya. Bentuk sayap tersebut menyebabkan kecepatan aliran udara bagian atas lebih besar dari pada di bagian bawah sehingga tekanan udara di bawah sayap lebih besar dari pada di atas sayap. Hal ini menyebabkan timbulnya daya angkat pada sayap pesawat. Agar daya angkat yang ditimbulkan pada pesawat semakin besar, sayap pesawat dimiringkan sebesar sudut tertentu terhadap arah aliran udara.



(a) Ketika sayap pesawat horizontal, sayap tidak mengalami gaya angkat
(b) Ketika sayap pesawat dimiringkan, pesawat mendapat gaya angkat sebesar F1 – F2
dengan:
 F1 – F2 = gaya angkat pesawat terbang (N),
 A= luas penampang sayap pesawat (m2),
v1= kecepatan udara di bagian bawah sayap (m/s),
v2= kecepatan udara di bagian atas sayap (m/s), dan
ρ = massa jenis fluida (udara).

Gaya Angkat Sayap Pesawat Terbang juga merupakan salah satu contoh Hukum Bernoulli.
Pada dasarnya, ada empat buah gaya yang bekerja pada sebuah pesawat terbang yang sedang mengangkasa .
1. Berat Pesawat yang disebabkan oleh gaya gravitasi Bumi
2. Gaya angkat yang dihasilkan oleh kedua sayap pesawat
3. Gaya ke depan yang disebabkan oleh mesin pesawat
4. Gaya hambatan yang disebabkan oleh gerakan udara.



Bagian depan sayap dirancang melengkung ke atas. Udara yang mengalir dari bawah berdesak-desakan dengan tudara yang ada di sebelah atas. Mirip seperti air yang ngalir dari pipa yang penampangnya besar ke pipa yang penampangnya sempit. Akibatnya, laju udara di sebelah atas sayap meningkat. Karena laju udara meningkat, maka tekanan udara menjadi kecil. Sebaliknya, laju aliran udara di sebelah bawah sayap lebih rendah, karena udara tidak berdesak-desakan (tekanan udaranya lebih besar). Adanya perbedaan tekanan ini, membuat sayap pesawat didorong ke atas. Karena sayapnya menempel dengan badan pesawat, maka pesawat dapat terbang.



Daftar pustaka:  https://putrarawit.wordpress.com/2015/03/14/prinsip-kerja-pesawat-terbang-hukum-bernoulli/